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Abstract A meshfree radial point interpolation method
(RPIM) is developed for stress analysis of three-
dimensional (3D) solids, based on the Galerkin weak
form formulation using 3D meshfree shape functions
constructed using radial basis functions (RBFs). As the
RPIM shape functions have the Kronecker delta
functions property, essential boundary conditions can
be enforced as easily as in the finite element method
(FEM). Numerical examples of 3D solids are presented
to verify validity and accuracy of the present RPIM
method, and intensive numerical study has been con-
ducted to investigate the effects of some important
parameters. It is demonstrated that the present mesh-
free RPIM is robust, stable, and reliable for stress
analysis of 3D solids.

Keywords Numerical analysis � meshfree � meshless �
radial point interpolation � 3D solid

1 Introduction

In recent years, a group of meshfree methods have been
developed and achieved remarkable progress, such as
smooth particle hydrodynamics (SPH) method (Lucy,
1977; Liu and Liu, 2003), diffuse element method
(DEM) (Nayroles et al., 1992), element free Galerkin

(EFG) method (Belytschko, 1994) and meshless local
Petrov–Galerkin (MLPG) method (Atluri and Zhu,
1998), et al.

The point interpolation method (PIM) (Liu and Gu,
2001a, 2001b, 2001c; Liu, 2002) is a meshfree method
developed using Galerkin weak form and shape func-
tions that are constructed based only on a group of
nodes arbitrarily distributed in a local support domain
by means of interpolation. A global background cell
structure is required to evaluate the integration in the
Galerkin weak-form. The major advantage of PIM is
that the shape functions created possess the Kronecker
delta function property, which allows simple enforce-
ment of essential boundary conditions as in the con-
ventional finite element method (FEM). Many
numerical techniques and treatments developed in FEM
can be largely utilized with minimum modifications.
There are two types of PIM shape functions have been
used so far with different forms of basis functions:
polynomial basis functions (Liu and Gu, 2001c; Liu,
2002) and radial basis functions (RBFs) (Wang and Liu,
2002a, 2002b; Liu, 2002; Liu and Gu, 2005).

PIM using radial basis functions (RBFs) is termed
as radial PIM (RPIM). In the RPIM, RBFs are used
for constructing shape functions and it has been proved
that the moment matrix of the RBF interpolation is
usually invertible for arbitrary scattered nodes (Powell,
1992; Schaback, 1994; Wendland, 1998) and there are
techniques attempted to overcome the singularity
problem (see, e.g., Liu, 2002). RPIM is, however, very
stable and robust for arbitrary nodal distributions.
There are several advantages of using RBF as basis
function in constructing PIM shape functions (Liu,
2002).

� Using RBF can effectively solve the singularity
problem of the polynomial PIM, this is also partially
because the use of local support domain that contains
very small number of nodes.

� RPIM shape functions are stable and hence flexible
for arbitrary and irregular nodal distribution.
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� RPIM shape functions can be easily created for three-
dimensional domains, because the only variable is the
distance in a RBF.

The RPIM has been successfully applied to 1D and
2D solid mechanics (Gu and Liu, 2001; Liu and Gu,
2001b; Liu and Yan, et al. 2002), plate and shell struc-
tures (Liu and Chen, 2001; Liu and Liu, et al. 2002),
problems of smart materials (Liu and Dai, et al. 2002),
geometrically nonlinear problems (Liu and Dai, et al.
2003), material non-linear problems in civil engineering
(Wang et al. 2002), and so on.

In this paper, a 3D RPIM is first formulated based on
the Galerkin weak form using locally supported shape
functions. Then some important parameters of RPIM
are investigated and two numerical examples are pre-
sented to demonstrate the efficiency, convergence and
accuracy of RPIM for stress analysis of 3D solids.

2 Radial basis point interpolation

Consider a function uðxÞ defined in a 3D problem do-
main X. The function can be approximated in a local
support domain of the point of interest x with a set of
arbitrarily distributed nodes using radial basis function
RiðxÞ augmented with polynomial basis function pjðxÞ
(Powell, 1992; Liu, 2002).

uðxÞ ¼
Xn

i¼1
RiðxÞai þ

Xm

j¼1
PjðxÞbj

¼ RTðxÞaþ PTðxÞb
ð1Þ

where n is the number of RBFs and is also identical to
the number of nodes in the local support domain of the
point of interest x, and m is the number of polynomial
basis functions. When m ¼ 0, pure RBFs are used.
Otherwise, the RBF is augmented with m terms of
polynomial basis functions. Coefficients ai and bj are
constants yet to be determined.

The polynomial term in Eq. (1) is not always neces-
sary. However, augment of polynomial in RPIM shape
functions has the following advantages (Liu, 2002):

1. Adding polynomial term up to the linear order can
ensure the C1 consistency that is needed to pass the
standard patch test.

2. In general, adding polynomial can always improve
the accuracy of the results, at least no negative effect
has been observed for meshfree weak-form methods.

3. Adding polynomial reduces the influence of the shape
parameters on the accuracy of the results, and will
provide us much more freedom in choosing shape
parameters.

4. Adding polynomial can improve the interpolation
stability for some RBFs.

In this paper, linear polynomial terms are adopted to
augment the RBFs.

In the radial basis function RiðxÞ, the variable is only
the distance between the point of interest x; y; zð Þ and a
node at (xi; yi; zi),

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ2 þ ðz� ziÞ2

q
ð2Þ

There are four types of radial basis functions (RBFs)
presented in Table 1, the multi-quadrics (MQ) function,
the Gaussian radial function (Exp), the thin plate spline
(TPS) function, and the Logarithmic radial basis func-
tion. In this paper, the multi-quadrics (MQ) (Hardy,
1990; Liu, 2002) function with real number of parame-
ters is adopted to construct RPIM shape functions and
two dimensionless parameters, ac and q, will be exam-
ined in detail in the numerical studies.

In order to determine the constants ai and bj, Eq. (1)
is enforced to be satisfied at these n nodes in the local
support domain, which leads to a set of n equations. The
matrix form of these equations can be expressed as

Ue ¼ Rqaþ Pmb ð3Þ
where the vector of function values Ue is

Ue ¼ u1 u2 � � � unf gT ð4Þ
The moment matrix of RBFs is

Rq ¼

R1ðr1Þ R2ðr1Þ . . . Rnðr1Þ
R1ðr2Þ R2ðr2Þ . . . Rnðr2Þ

..

. ..
. ..

. ..
.

R1ðrnÞ R2ðrnÞ . . . RnðrnÞ

2

66664

3

77775

ðn�nÞ

ð5Þ

The polynomial moment matrix is

Pm ¼

1 x1 y1 z1 . . . pmðx1Þ
1 x2 y2 z2 . . . pmðx2Þ
..
. ..

. ..
. ..

. ..
. ..

.

1 xn yn zn . . . pmðxnÞ

2
6664

3
7775

n�mð Þ

ð6Þ

The vector of unknown coefficients for RBFs is

aT ¼ a1 a2 � � � anf g ð7Þ

Table 1 Typical radial basis
functions with dimensionless
shape parameters

Name Expression Shape parameters
(real number)

1. Multi-quadrics (MQ) Riðx; y; zÞ ¼ ðr2i þ ðacdcÞ2Þq ac � 0; q

2. Gaussian (EXP) Riðx; y; zÞ ¼ exp �acðri
dc
Þ2

h i
ac

3. Thin plate spline (TPS) Riðx; y; zÞ ¼ rg
i g

4. Logarithmic Riðx; y; zÞ ¼ rg
i log ri g
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The vector of unknown coefficients for polynomial is

bT ¼ b1 b2 � � � bmf g ð8Þ
There are nþ mð Þ unknowns in Eq. (3), and here m
additional equations need to be added. Following m
constraint conditions (Golberg et al. 1999) are applied
to obtain the additional unknowns.

Xn

i¼1
pjðxiÞai ¼ PT

ma ¼ 0; j ¼ 1; 2; � � � ; m ð9Þ

Combining Eqs. (3) and (9) yields the following set of
equations in the matrix form

~Ue ¼
Ue

0

� �
¼ Rq Pm

PT
m 0

� �
a

b

� �
¼ Ga0 ð10Þ

where

~Ue ¼ u1 u2 � � � un 0 0 � � � 0f g ð11Þ

G ¼ Rq Pm

PT
m 0

� �
ð12Þ

aT
0 ¼ a1 a2 � � � an b1 b2 � � � bmf g ð13Þ
Because the moment matrix Rq is symmetric, the matrix
G will also be symmetric. Solving Eq. (10), the un-
knowns can be obtained as

a0 ¼
a

b

� �
¼ G�1 ~Ue ð14Þ

Substituting Eq. (14) into Eq. (1) leads to

uðxÞ ¼ RTðxÞ PTðxÞ
� �

G�1 ~Ue ¼ ~UðxÞ~Ue ð15Þ
where

~U
TðxÞ ¼ RTðxÞ PTðxÞ

� �
G�1

¼ /1ðxÞ /2ðxÞ � � � /nðxÞf
/nþ1ðxÞ � � � /nþmðxÞ g

ð16Þ

Finally, the RPIM shape functions UðxÞ are obtained
as

UTðxÞ ¼ /1ðxÞ /2ðxÞ � � � /nðxÞf g ð17Þ
Eq. (15) can be rewritten as

uðxÞ ¼ UTðxÞUe ¼
Xn

i¼1
/iui ð18Þ

The derivatives of uðxÞ can be easily obtained as

u;l ðxÞ ¼ UT
;lðxÞUe ð19Þ

where l denotes the coordinates x, y or z. A comma
designates a partial differentiation with respect to the
indicated spatial coordinate that follows.

3 Global weak-form for three dimensional solids

Consider the static problem defined in the 3D domain X
boundary by C. The standard partial differential equa-

tion and boundary conditions for a 3D solid mechanics
problem can be given as the follows (Timoshenko and
Goodier, 1970).
Equilibrium equation:

LTrþ b ¼ 0 on X ð20Þ
Natural boundary condition:

r � n ¼ t on Ct ð21Þ
Essential boundary condition:

u ¼ u on Cu ð22Þ
where L is differential operator; rT ¼ f rxx ryy rzz
sxy syz szx g is the stress vector, uT ¼ f u v w g is
the displacement vector, bT ¼ f bx by bz g is the body
force vector, t is the prescribed traction on the natural
boundaries, u is the prescribed displacement on the
essential boundaries, and n is the vector of unit outward
normal at a point on the neutral boundary.

The unconstrained Galerkin weak form of Eq. (20) is
posed as the follows (see, e.g., Liu, 2002)
Z

X

ðLduÞTðDLuÞ dX�
Z

X

duTb dX�
Z

Ct

duTtdC ¼ 0 ð23Þ

where D is the matrix of elastic constants. For 3D iso-
tropic solids, we have

D ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ

1
m

1�m 1
m

1�m
m

1�m 1

0 0 0 1�2m
2ð1�mÞ

0 0 0 0 1�2m
2ð1�mÞ

0 0 0 0 0 1�2m
2ð1�mÞ

2

6666666664

3

7777777775

ð24Þ

where E and m are Young’s modulus and Poisson’s radio
respectively.

It should be mentioned that Eq. (23) is a weak-form
defined over the global problem domain X. Although
theoretically the constrained Galerkin weak form
should be used to enforce the global compatibility, it
has been found that the unconstrained Galerkin weak
form works well with RPIM shape functions (Liu,
2002). Hence, the unconstrained Galerkin weak form is
used in this work.

Substituting Eq. (18), the approximations of uðxÞ,
into Eq. (23) yields

Ku ¼ f ð25Þ
where K is the stiffness matrix

Kij ¼
Z

X

BT
i DBj dX ð26Þ

in which B is a strain matrix
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Bi ¼

/i;x 0 0
0 /i;y 0
0 0 /i;z

/i;y /i;x 0
0 /i;z /i;y

/i;z 0 /i;x

2

666664

3

777775
ð27Þ

In Eq. (25), f is the nodal force vector given by

fi ¼
Z

Ct

/itdCþ
Z

X

/ib dX ð28Þ

The numerical procedure of RPIM for 3D problems is
listed as follows:

1. Looping over background cells to determine all Gauss
points to find out its location and weight.

2. Looping over Gauss points for integration of Eq. (18)
a. Determine the support domain for specified Gauss

point and select neighboring nodes based on a
defined criterion,

b. Compute shape function and its derivatives for
each Gauss point,

c. Evaluate stiffness and load at each Gauss point,
d. Assemble the contribution of each Gauss point to

form system equation.
3. Enforcing essential (displacement) boundary conditions.
4. Solving the system equation to obtain nodal dis-

placements.
5. Computing stress components.

4 Analysis of shape parameters through function fitting

The solutions obtained using the RPIM may first depend
on the quality of its shape functions. Hence, in this
section, the interpolation errors using RBF shape func-
tions are examined through fitting a given function. The
MQ-RBF is employed for interpolation and linear
polynomial terms are included in the following studies.

In order to perform the interpolation, a local support
domain must be taken into account. In this paper, two
different models of the support domain are examined.
Model-1 of support domain is defined as a spherical
domain centered at the point of interest x (which is often
a quadrature point). Then the field nodes within the
sphere would be adopted in the local support domain for
this point of interest. The dimension of the support
domain is naturally defined by the radii of the sphere,
which is determined as the follows

ds ¼ asdc ð29Þ
where as is dimensionless size of the support domain,
and dc is the nodal spacing near the point of interest x. If
the nodes are uniformly distributed, dc is simply the
distance between two neighboring nodes. In the case
where the nodes are non-uniformly distributed, dc can be
defined as an ‘‘average’’ nodal spacing in the support
domain (see, e.g., Liu, 2002).

As Model-2 of support domain is concerned, the
number of field nodes in the local support domain would
be predefined, i.e., n. Then according to the different
distances between the field nodes and the point of
interest x, the n nodes which are the nearest to the point
of interest x are adopted in the support domain. The
results of using these two models will be presented in the
following studies.

In the analysis of function fitting, a domain of x; y; zð Þ
2 0; 1½ � � 0; 1½ � � 0; 1½ � is considered and 729 uniformly
distributed field nodes with a constant nodal distance
dc ¼ 0:125 are adopted to represent the domain. A total
of 512 regularly distributed points of x; y; zð Þ 2
0:05; 0:95½ � � 0:05; 0:95½ � � 0:05; 0:95½ � are used as
interpolation points.

Because the linear function in 3D is reproduced exactly
when linear polynomial terms are included in Eq. (1) (Liu,
2002), a harmonic function of 3D is considered, i.e.,

f x; y; zð Þ ¼ sin x cos y sin z ð30Þ
The first-order partial derivative with respect to x is

f0x x; y; zð Þ ¼ cos x cos y sin z ð31Þ
The approximated values of the field function and the
first derivative with x for each interpolation point x can
be obtained using interpolation as the follows:

~f xð Þ ¼ U xð ÞFs ¼
Xn

i¼1
/ifi ð32Þ

~f ;x ¼
oU xð Þ

ox
Fs ¼

Xn

i¼1

o/i

ox
fi ð33Þ

where /i is the RPIM-MQ shape function, and n is the
number of field nodes used in the support domain.
Vector Fs collects the true nodal function values for
these n field nodes, and fi is the function value for the ith
field node.

The following norms are used as error indicators.

e ¼ 1

N

XN

i¼1

~f i � fi

fi

����

���� ð34Þ

e0 ¼ 1

N

XN

i¼1

~f
i
;x � f i

;x

f i
;x

�����

����� ð35Þ

where N is the total number of the interpolation nodes.

4.1 Shape parameters of the RPIM-MQ

The effects of two shape parameters, q and ac, in the
MQ-RBF are first studied. In the process of this study,
Model-1 of support domain is adopted and as ¼ 3:0 is
fixed in the study.

In the study of the effect of q, ac ¼ 4:0 is fixed. The
average fitting errors e obtained for different values of q
are plotted in Fig. 1. It can be found that a more accurate
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result can be obtained when the value of q varies between
1 and 3 (but not 1, 2 and 3). When q > 4:0, the fitting
error is found very large due to the badly conditioned
moment matrix. However, if the value of q is identical to
1.0, 2.0, 3.0 and 4.0, the RPIM-MQ will fail due to the
singularity of the moment matrix. In addition, if q is too
close to 1.0, 2.0 or 3.0, the condition number of inter-
polation matrix of RPIM will become bigger, the mo-
ment matrix will be nearly singular and the results are not
stable any more. The preferred value of parameter q is
close to 1.0, 2.0 or 3.0, but not equal to these values.
Therefore, in using RPIM shape functions, one has to
strike a good balance between accuracy and stability.

Figure 2 shows the effect of parameter ac on function
fitting accuracy. For comparison, two curves of function
fitting errors obtained using q ¼ 1:03 and q ¼ 2:83 are
plotted in the figure. The value, q ¼ 1:03, which is found
by Wang and Liu (2002b), performs the best for most
computational problems. The other value, q ¼ 2:83, is
found leads to the best result in the previous study of
parameter q. It can be found, when ac > 3:0, the value of
the fitting error is very small and changes little with
respect to either the change of parameter ac or q.

4.2 Convergence studies

In the convergence study, Model-1 of the support do-
main is employed, q ¼ 1:03 ac ¼ 4:0 as ¼ 3:0 are fixed.
The convergence curves with respect to nodal refinement
are plotted in Fig. 3. Note that in Fig. 3, h is actually the
nodal spacing dc defined in Eq. (29), which is simply the
distance between two neighboring nodes as the fields
nodes are regularly and evenly distributed in this func-
tion fitting test. It can be found that RPIM has obtained
very good convergence rates for fitting both function
and its first-order derivative. However, the convergence
process of the first-order partial derivative with x is not
as stable as the process of the function.

It should be noted here that the interpolation error is
only one part of total error in a meshfree method in
solving a problem of computational mechanics. The
studies of shape parameters presented in this section are
only to check the interpolation quality and the repro-
ducibility of using RPIM-MQ shape functions. The
accuracy will be also studied in the following sections in
the analysis of actual problems of computational
mechanics.

5 Numerical experiments of 3D elasticity problems

In order to validate the present method, the RPIM is used
for displacement and stress analysis of 3D solids. The
units are all taken as international standard units and the
material adopted is linear elastic with E ¼ 3:0� 107 and
m ¼ 0:3 in this paper.
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Fig. 1 Error in function fitting using RPIM-MQ shape functions with
different q (MQ-RBF augmented with linear polynomials is used with
shape parameter ac ¼ 4:0 and Model-1 of the support domain is
adopted with as ¼ 3:0)
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5.1 A cantilever beam

A 3D cantilever beam as shown in Fig. 4 is studied to
benchmark the present method. The left end of the beam
is fixed and the right end is subjected to a parabolically
distributed downwards traction. As the beam is rela-
tively thin, a plane stress problem can be considered to
yield the analytical solution (Timoshenko and Goodier,
1970). This analytical solution is adopted as the refer-
ence solution in our numerical study.

The displacement components of the analytical
solution are given by

ux ¼ �
py
6EI

ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

	 
� �
ð36Þ

uy ¼
p

6EI
3my2ðL� xÞ þ ð4þ 5mÞD

2x
4
þ 3L� xð Þx2

� �
ð37Þ

where the moment of the inertia I of the beam is given
by I ¼ D3=12.

The stress components corresponding to above dis-
placements are

rx ¼ �
pðL� xÞy

I
ð38Þ

ry ¼ 0 ð39Þ

rxy ¼
p
2I

D2

4
� y2

� �
ð40Þ

The parameters are taken as P ¼ �1000, L ¼ 50, D ¼ 10
and B ¼ 1 in the study of this numerical example.

5.1.1 Effects of parameters and the dimension
of the support domain

In the following studies, the cantilever beam is regarded
as a 3D solid, and RPIM is used to obtain numerical
solutions. The effects of parameters q, ac and the
dimension of the support domain on the displacements
results of the cantilever are then investigated. The
problem domain is represented by 1122 regularly dis-
tributed field nodes, and 500 hexahedron-shaped back-
ground cells are used for numerical integration. In each
background cell, 4� 4� 4 Gauss points are employed.
The error indicator is defined as the follows:

eV ¼
1

N

XN

i¼1

V RPIM
i � V analytical

i

V analytical
i

�����

����� ð41Þ

where Vi denotes the displacement in y-direction of the
ith node and N is the number of total field nodes.

� Effect of parameter q
In this investigation, ac is fixed at 4.0, Model-1 of
the support domain is adopted and as is fixed at 3.0.
Errors defined in Eq. (41) for different values of q
are computed and plotted in Fig. 5. It can be found
that when q in the range of 1:0� 3:0 (but not 1, 2,
and 3), the value of error is very small and error
changes very little with respect to the change of q.
The figure also shows that for this particular case,
q ¼ 3:28 leads to the best result, and, when q > 3:28,
the error will significantly increase because of the big
condition number of the moment matrix.

� Effect of parameter ac
The effects of ac is studied for a wide range of
1:0� 10:0 with Model-1 of the support domain em-
ployed and as fixed at 3.0. Errors for different values
of ac are plotted in Fig. 6. For comparison, two
values of parameter q are employed. One value is
1.03, and the other one is 3.28, which has been found
producing the best result in the previously study. The
figure shows that when ac > 3:0, we can get a more
accurate and stable result, and the difference between
the results, obtained using q ¼ 1:03 and q ¼ 3:28
respectively, is very little.

� Effect of the dimensions of support domains
In the process of this study, q ¼ 1:03 and ac ¼ 4:0 are
fixed. Two curves obtained using two models of the
support domain respectively are plotted in Fig. 7.
Considering that using too many nodes in the sup-
port domain will cause time consuming, about the use
of 20� 70 nodes gives a better result for these two
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Fig. 4 A 3D cantilever beam subjected to a parabolic traction at the
free end
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Fig. 5 Influence of parameter q on the displacement results obtained
using RPIM-MQ. (Error is defined by Eq. (41); a total 1122 regularly
distributed field nodes and 500 hexahedron-shaped back ground cells
are used; MQ-RBF augmented with linear polynomials is used with
shape parameter ac ¼ 4:0 and Model-1 of the support domain is
adopted with as ¼ 3:0)
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models of the support domain. The figure also shows
that Model-2 over performs Model-1. This can be
explained as the follows. By using Model-1, fewer
nodes will be adopted in the support domain when
the point of interest is located near or at the bound-
aries. Using Model-2, there will not be such a prob-
lem, as we always use a fixed number of nearest
nodes.

In the following studies, q ¼ 1:03 and ac ¼ 4:0 are
adopted which have been found perform well in most
computational problems that have been investigated so
far (Liu, 2002; Wang and Liu, 2002b); Model-2 is em-
ployed based on our studies previously.

5.1.2 Results of the cantilever beam

In the 3D RPIM analysis of the cantilever beam, both a
regular nodal distribution and an irregular nodal dis-
tribution, shown respectively in Figs. 8 and 9, are em-
ployed. For the regular nodal distributed model, there
are totally 2223 field nodes and 1344 hexahedron-shaped
background integration cells, in each tetrahedron cell,
4� 4� 4 Gauss points are used to evaluate the stiffness
matrix; for the irregular nodal distributed model, 1620
field nodes and 4447 tetrahedron-shaped background
integration cells are used, 11 Gauss points are employed
in each tetrahedron cell in the process of integration. As
Model-2 of support domain is employed, 55 and 52 field
nodes are involved in the support domains for regular
and irregular nodal distribution respectively.

Figures 10–12 show the comparisons between the
analytical solutions and the RPIM results, in which
Fig. 10 shows the comparison for displacement in
y-direction along the neutral axis, Fig. 11 for the normal
stress and Fig. 12 for shear stress. All these plots show

that the results obtained using RPIM in 3D for both
regular and irregular nodal distributed models are in
good agreement with the analytical solutions. Another
conclusion is that, the regularity of nodal distribution
has little effect on the result of the RPIM.

5.2 An axletree base

In this example, the displacement analysis of an axletree
base is studied using the present 3D-RPIM code. As
shown in Fig. 13, the axletree base is symmetric about
the y-z plane, subjected to a uniformly distributed force
along a line and fixed in the locations of four lower
cylindrical holes and the bottom plane. The value of the
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Fig. 6 Influence of ac on the displacement results obtained using
RPIM-MQ with q ¼ 1:03, q ¼ 3:28 and different ac (Error is defined
by Eq. (41); a total 1122 regularly distributed field nodes and 500
hexahedron-shaped back ground cells are used; MQ-RBF augmented
with linear polynomials is used and Model-1 of the support domain is
adopted with as ¼ 3:0)
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Fig. 8 Regular nodal distribution for the cantilever (A total of 2223
regular field nodes and 1344 hexahedron-shaped background cells are
used)

Fig. 9 Irregular nodal distribution for the cantilever (A total of 1620
irregular field nodes and 4447 tetrahedron-shaped background cells
are used)
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uniformly distributed force is 5000. Numerical results at
point K and two lines (Line 1 and Line 2) will be
examined in our study.

First, for the displacement distribution along Line
1, Line 2 and at point K, a reference solution is ob-
tained using FEM software ANSYS with a very fine
mesh of high order elements (ten-node tetrahedron
element). Then the displacement results are obtained
using the RPIM and ANSYS (four-node tetrahedron
element is employed) with exactly the same distribu-
tion of nodes for comparison. In the process of this
study, the background cell distribution of the RPIM
model is also the same as the element distribution of
ANSYS model.

Figures 14 and 15 show the displacement distribution
along Line 1 and Line 2 obtained using the RPIM and

ANSYS respectively under the same condition (totally
4571 irregular distributed field nodes and 20561
tetrahedron-shaped background cells). It can be found
that, the results obtained using the RPIM closely
matches the corresponding reference solution and are
much closer to the reference solutions than that obtained
using ANSYS adopting a linear element.

Finally, a comparison of the convergence studies
between the RPIM and ANSYS is carried out. Point K
located as shown in Fig. 14 is selected as the reference
point. Figure 16 shows that both the RPIM and the
FEM software ANSYS have a good convergence rate,
but the RPIM can get more accurate results than AN-
SYS using a linear element.
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Fig. 10 Displacement (uy) distribution along the neutral axis (MQ-
RBF augmented with linear polynomials is used with shape parameter
q ¼ 1:03 and ac ¼ 4:0; Model-2 of the support domain is adopted, 52
and 55 field nodes are involved in the support domain for regular and
irregular nodal distribution respectively)
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Fig. 11 Normal stress distribution along the line of x ¼ L=2, z ¼ 0:0
(MQ-RBF augmented with linear polynomials is used with shape
parameter q ¼ 1:03 and ac ¼ 4:0; Model-2 of the support domain is
adopted, 52 and 55 field nodes are involved in the support domain for
regular and irregular nodal distribution respectively)
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Fig. 12 Shear stress distribution along the line of x ¼ L=2, z ¼ 0:0
(MQ-RBF augmented with linear polynomials is used with shape
parameter q ¼ 1:03 and ac ¼ 4:0; Model-2 of the support domain is
adopted, 52 and 55 field nodes are involved in the support domain for
regular and irregular nodal distribution respectively)

Fig. 13 An axletree base
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6 Conclusions

A meshfree radial point interpolation method (RPIM)
for three-dimensional solids is presented in this paper.
The radial basis functions augmented with polynomial
are used to construct shape functions based on a 3D
local support domain. Therefore, the essential bound-
ary conditions can be implemented as easy as in the
conventional FEM. Based on the work done on 1D
and 2D problems, the RPIM for 3D are formulated

and coded in this work. Some important parameters
are investigated in detail and two numerical exam-
ples of 3D solids are studied using the present 3D-
RPIM.

Base on the study conducted, following conclusions
can be drawn:

1. The RPIM shape functions constructed using RBF
augmented with polynomial possess the following
features:
� The RPIM shape functions are capable of repro-

ducing what is contained in the basis, which is
essential for any numerical method to produce
accurate solution.

� The RPIM shape functions have a good conver-
gence capability. This allows the error of the
approximation of function that is sufficiently
smooth to approach zero when the nodal spacing is
reduced sufficiently small.

2. Based on the study of function fitting and the
numerical example, the remarks of the effect of some
shape parameters are noted as follows:
� For parameter q, the value in the range of 1:0–3:0

(but not 1, 2, and 3) is recommended for 3D
problems, and q ¼ 1:03 is a robust choice, which is
also consistent with the findings from 2D-RPIM
studies.

� For parameter ac, when its value is bigger than 3.0,
we can obtain a better result and ac ¼ 4:0 is a ro-
bust and consistent choice in the RPIM.

� For the two models of the support domain pre-
sented in this paper, Model-2 performs better for
most 3D problems especially when the geometry of
the domain is complicated. For Model-1, as ¼ 3:0 is
recommended; for Model-2, 20–70 nodes in the
local support domain are preferred.
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Fig. 14 Distribution of the displacement ux along Line 1 (The results
are obtained using the RPIM and ANSYS under the same condition:
totally 4571 irregular distributed nodes and 20561 tetrahedron-shaped
cells. For the RPIM: MQ-RBF augmented with linear polynomials is
used with shape parameter q ¼ 1:03 and ac ¼ 4:0; Model-2 of the
support domain is adopted and 29 field nodes are involved in the
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Fig. 15 Distribution of the displacement ux along Line 2 (The results
are obtained using the RPIM and ANSYS under the same condition:
totally 4571 irregular distributed nodes and 20561 tetrahedron-shaped
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3. The comparison study of the axletree has shown that
the RPIM has better accuracy than the linear FEM.

In a summary, we state that the RPIM is a very
stable, robust and reliable numerical method for stress
analysis of 3D solids.
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